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In this paper we analyze entanglement classification of relaxed Greenberger-Horne-

Zeilinger-symmetric states ρES , which is parametrized by four real parameters x, y1,

y2 and y3. The condition for separable states of ρES is analytically derived. The higher
classes such as bi-separable, W, and Greenberger-Horne-Zeilinger classes are roughly

classified by making use of the class-specific optimal witnesses or map from the relaxed
Greenberger-Horne-Zeilinger symmetry to the Greenberger-Horne-Zeilinger symmetry.

From this analysis we guess that the entanglement classes of ρES are not dependent

on yj (j = 1, 2, 3) individually, but dependent on y1 + y2 + y3 collectively. The diffi-
culty arising in extension of analysis with Greenberger-Horne-Zeilinger symmetry to the

higher-qubit system is discussed.
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1 Introduction

Entanglement[1] is an important physical resource in the context of quantum information

theories[2]. As shown for last two decades it plays a crucial role in quantum teleportation[3],

superdense coding[4], quantum cloning[5], quantum cryptography[6]. It is also quantum en-

tanglement, which makes the quantum computer outperform the classical one[7]. Therefore,

it is greatly important task to understand what kind and how much entanglement a given

quantum state has.

For multipartite quantum states there are several types of entanglement. Each type is in

general categorized by stochastic local operations and classical communication (SLOCC)[8].

Thus, these types of entanglement is often called SLOCC-equivalence classes. For example,

for three-qubit pure states[9] there are six SLOCC-equivalence classes such as separable, three

bi-separable (A−BC, B−AC, C−AB), W and Greenberger-Horne-Zeilinger (GHZ) classes.

Among them genuine tripartite entanglement arises in W and GHZ classes. The representative

states of these classes are

|GHZ〉 =
1√
2

[|000〉+ |111〉] (1)

937
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|W〉 =
1√
3

[|001〉+ |010〉+ |100〉] .

One of the most remarkable fact in this classification is that the set of W states forms measure

zero in the whole three-qubit pure states.

This classification can be extended to three-qubit mixed states[10]. Following Ref.[10]

the whole three-qubit mixed states are classified as separable (S), bi-separable (B), W and

GHZ classes. These classes satisfy a linear hierarchy S ⊂ B ⊂ W ⊂ GHZ. One remarkable

fact, which was proved in this reference, is that the W-classais not of measure zero among all

mixed-states.

Although SLOCC classes for three-qubit system are well-known, we still do not know how

the entanglement is classified in multi-qubit system except four-qubit pure states, where there

are nine SLOCC classes[12]. Furthermore, still it is very difficult problem to find a SLOCC

class of a given three-qubit mixed statebexcept few rare cases. Thus, it is important task to

develop a method, which enables us to find a SLOCC class of an arbitrary three-qubit states.

Recently, a significant progress is made in this issue. In Ref.[15] a complete SLOCC

classification for the set of the GHZ-symmetric states was reported (see Fig. 1). According to

this complete classification the ratio of number of S, B, W, and GHZ states in the whole set

of the GHZ-symmetric states is 1 : 1 : 1.076 : 0.924. Thus, W class is not of measure zero in

this restricted set of the three-qubit states. Using this classification the three-tangle τ for the

arbitrary GHZ-symmetric states is explored in Ref.[16]. Moreover, this complete classification

is used to construct the class-specific optimal witnesses for the three-qubit entanglement[11].

The purpose of this paper is to explore a possible extension of Ref.[15] to treat more

three-qubit mixed states. For this purpose we modify the symmetry group to, so-called, the

relaxed GHZ symmetry group. The whole set of quantum states invariant under the relaxed

GHZ symmetry group is parametrized by four real parameters (x, y1, y2, y3). The complete

classification for S states is analytically derived. However, the classification for B, W, and

GHZ states is incomplete. Rough classification for B, W, and GHZ states is explored by

making use of the class-specific optimal witnesses[11] or GHZ symmetry[15], respectively.

The paper is organized as follows. In next section we review Ref. [15] briefly. In section III

we discuss on the relaxed GHZ symmetry. It is found that the set of relaxed GHZ-symmetric

states is parametrized by four real parameters. In section IV we derive a condition for the

separable region in the four-dimensional parameter space by applying a Lagrange multiplier

method. In section V we perform a entanglement classification of the relaxed GHZ-symmetric

states roughly by making use of the class-specific optimal witnesses or map from relaxed GHZ

symmetry to GHZ symmetry. In section VI a conclusion is given. In particular, we discuss on

the difficulty arising when we extend the analysis with the GHZ symmetry to the higher-qubit

systems in this section.

2 classification of GHZ-symmetric states

In this section we review Ref. [15] briefly. The GHZ-symmetric states are the three-qubit

states which are invariant under the following transformations: (i) qubit permutations, (ii)

aAs Ref. [11] we will use the names of the SLOCC classes in an exclusive sense throughout this paper.
bFor three-qubit pure states it is possible to find the SLOCC classes by computing the concurrence[13] of the
reduced states and three-tangle[14] for the given states.
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simultaneous three-qubit flips (i.e., application of σx ⊗ σx ⊗ σx), (iii) qubit rotations about

the z-axis of the form

U(φ1, φ2) = eiφ1σz ⊗ eiφ2σz ⊗ e−i(φ1+φ2)σz . (2)

It is straightforward to show that the general form of the GHZ-symmetric states ρS is

parametrized by two real parameters x and y as

ρS(x, y) =

(
x+

√
3

2
y +

1

8

)
|GHZ+〉〈GHZ+|+

(
−x+

√
3

2
y +

1

8

)
|GHZ−〉〈GHZ−| (3)

+

(
1

8
− y

2
√

3

)[
|001〉〈001|+ |010〉〈010|+ |011〉〈011|+ |100〉〈100|+ |101〉〈101|+ |110〉〈110|

]
where

|GHZ±〉 =
1√
2

(|000〉 ± |111〉) . (4)

The real parameters x and y are introduced such that the Euclidean metric in the (x, y) plane

coincides with the Hilbert-Schmidt metric d(A,B)2 ≡ 1
2 tr(A−B)†(A−B), i.e.,

d2
(
ρS(x1, y1), ρS(x2, y2)

)
= (x2 − x1)2 + (y2 − y1)2. (5)

Since ρS(x, y) is a quantum state, the parameters x and y are restricted as

− 1

4
√

3
≤ y ≤

√
3

4
, y ≥ ± 2√

3
x− 1

4
√

3
. (6)

This restriction can be easily derived by computing the eigenvalues of ρS . Thus, the set of

the GHZ-symmetric states are represented as a triangle in (x, y) plane as Fig. 1 shows. Each

point inside the triangle corresponds to each GHZ-symmetric state.

GHZGHZ

WW bi
-

sepbi
-
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p

sep
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Fig. 1. Complete classification of GHZ-symmetric states.

In order to classify the GHZ-symmetric states it is worthwhile noting that there exists a

map from an arbitrary three-qubit pure state |ψ〉 to the GHZ-symmetric state ρS(ψ), which

is defined as

ρS(ψ) =

∫
dUU |ψ〉〈ψ|U†, (7)
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where the integral is understood to cover the entire GHZ symmetry group. If, for example,

|ψ〉 =
∑1
i,j,k=0 ψijk|ijk〉, the corresponding ρS(ψ) is given by Eq. (3) with

x =
1

2
(ψ∗000ψ111 + ψ000ψ

∗
111) y =

1√
3

(
|ψ000|2 + |ψ111|2 −

1

4

)
. (8)

Another fact we will use for classification is that applying GL(2, C) transformations to any

qubit does not change the entanglement class of a multiqubit state. This fact leads from

the invariance of the entanglement class under the stochastic local operations and classical

communication (SLOCC)[9, 8].

In order to find the boundary of each entanglement class, therefore, we fix the y coordinate

and derive the maximum of |x| by using Eq. (8) and applying the Lagrange multiplier method.

Since mirror symmetry implies xmin = −xmax, it is possible to restrict ourselves to x ≥ 0.

This procedure yields some region in the (x, y) plane. If this region is a convex, the set of

states corresponding to this region exhibits a same entanglement property. If it is not convex,

the proper boundary of the class is obtained by the convex hull of this region.

The entanglement classification derived in this way is summarized in Fig. 1. Recently, this

classification was used to compute the three-tangle[14] of the entire GHZ-symmetric states

analytically[16]. More recently, this is used to derive the class-specific optimal witnesses for

three-qubit entanglement[11].

3 Relaxed GHZ symmetry

In this section we will relax the condition of the GHZ symmetry to treat more large set of the

three-qubit states. The symmetry we consider is identical with the GHZ symmetry without

first condition, i.e., qubit permutations. We will call this the relaxed GHZ symmetry.

It is not difficult to show that the general form of the relaxed GHZ-symmetric states is

parametrized by four real parameters x, y1, y2, and y3 as

ρES(x, y1, y2, y3) (9)

=

(
1

8
+
y1 + y2 + y3

2
+ x

)
|GHZ+〉〈GHZ+|

+

(
1

8
+
y1 + y2 + y3

2
− x
)
|GHZ−〉〈GHZ−|

+

(
1

8
− y1 + y2 − y3

2

)[
|001〉〈001|+ |110〉〈110|

]
+

(
1

8
− y1 − y2 + y3

2

)[
|010〉〈010|+ |101〉〈101|

]
+

(
1

8
− −y1 + y2 + y3

2

)[
|011〉〈011|+ |100〉〈100|

]
.

The parameters are chosen so that the four-dimensional Euclidean metric coincides with the

Hilbert-Schmidt metric, i.e.,

d2

(
ρES(x̄, ȳ1, ȳ2, ȳ3), ρES(x, y1, y2, y3)

)
= (x̄−x)2 +(ȳ1−y1)2 +(ȳ2−y2)2 +(ȳ3−y3)2. (10)
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Fig. 2. Pictorial representation of Eq. (11). Unlike the GHZ-symmetric case each point inside the

triangle in (b) corresponds to infinite number of quantum states with same y1 + y2 + y3.

Since ρES should be a physical state, the parameters are restricted as

|y1 + y2| −
1

4
≤ y3 ≤

1

4
− |y1 − y2|, 0 ≤ 1

8
+
y1 + y2 + y3

2
± x ≤ 1. (11)

The restriction (11) can be depicted pictorially. As Fig. 2(a) shows, the physically available

value of yi (i = 1, 2, 3) is confined inside polyhedron in the three-dimensional (y1, y2, y3) space.

As this figure exhibits, yi’s are restricted by − 1
4 ≤ y1, y2, y3 ≤ 1

4 . However, as Fig. 2(b) shows,

y1 +y2 +y3 is restricted by − 1
4 ≤ y1 +y2 +y3 ≤ 3

4 depending on x. Unlike the GHZ-symmetric

case each point inside the triangle in Fig. 2(b) corresponds to infinite number of quantum

states with same y1 + y2 + y3.

Similarly to GHZ symmetry there exists a mapping from a set of the three-qubit pure

states to the set of the relaxed GHZ-symmetric states. Let |ψ〉 be an arbitrary three-qubit

pure state. Then, the corresponding relaxed GHZ-symmetric state is given by Eq. (7). The

only difference is a change of the symmetry group from the GHZ symmetry to the relaxed

GHZ symmetry. If, for example, |ψ〉 =
∑1
i,j,k=0 ψijk|ijk〉, the corresponding ρES(ψ) is given

by Eq.(9) with

x =
1

2
(ψ000ψ

∗
111 + ψ∗000ψ111) (12)

y1 =
1

2

(
|ψ000|2 + |ψ111|2 + |ψ011|2 + |ψ100|2

)
− 1

4

y2 =
1

2

(
|ψ000|2 + |ψ111|2 + |ψ101|2 + |ψ010|2

)
− 1

4

y3 =
1

2

(
|ψ000|2 + |ψ111|2 + |ψ110|2 + |ψ001|2

)
− 1

4
.

It is worthwhile noting a relation

(u⊗ u⊗ u)ρES(x, y1, y2, y3)(u⊗ u⊗ u)† = ρES(−x, y1, y2, y3) (13)

where u =

(
0 1
−1 0

)
. This implies that the sign of x does not change the entanglement

class of ρES(x, y1, y2, y3). Therefore, it is convenient to restrict ourselves to x ≥ 0 in the

following.
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4 Separable states

In this section we will find a region in the four-dimensional (x, y1, y2, y3) space, where the

separable states reside. The calculation procedure is similar to Ref.[15]. First, we define a

general form of the fully separable three-qubit pure state by making use of the local-unitary

transformation, i.e., |ψsep〉 = (U1 ⊗ U2 ⊗ U3) |000〉, where

Uj =

(
Aj −B∗j
Bj A∗j

)
|Bj |2 = 1− |Aj |2. (14)

Second, we map |ψsep〉 to the extend GHZ-symmetric state ρES(ψsep) by using a map dis-

cussed in the previous section. Finally, we maximize x when y1, y2, and y3 are fixed.

Combining Eq. (12) and Eq. (14), ρES(ψsep) is given by Eq. (9) with

x = |A1||A2||A3|
√

1− |A1|2
√

1− |A2|2
√

1− |A3|2 (15)

µ1 = |A2|2|A3|2 + (1− |A2|2)(1− |A3|2)

µ2 = |A1|2|A3|2 + (1− |A1|2)(1− |A3|2)

µ3 = |A1|2|A2|2 + (1− |A1|2)(1− |A2|2),

where µi = 2yi + 1
2 . In order to apply the Lagrange multiplier method we define

xΛ = x+

3∑
i=1

ΛiΘi, (16)

where Λi’s are the Lagrange multiplier constants and Θi’s are the constraints given by

Θ1 = |A2|2|A3|2 + (1− |A2|2)(1− |A3|2)− µ1 (17)

Θ2 = |A1|2|A3|2 + (1− |A1|2)(1− |A3|2)− µ2

Θ3 = |A1|2|A2|2 + (1− |A1|2)(1− |A2|2)− µ3.

Before proceeding further, it is worthwhile to compare Eq. (16) with the corresponding

equation derived for GHZ-symmetric case at this stage. For GHZ-symmetric case[15] xΛ for

the separable states becomes

xΛ = |A1||A2||A3|
√

1− |A1|2
√

1− |A2|2
√

1− |A3|2 + ΛΘ (18)

Θ = |A1|2|A2|2|A3|2 + (1− |A1|2)(1− |A2|2)(1− |A3|2)−
(√

3y +
1

4

)
.

Thus xΛ in Eq. (18) has a Ai ↔ Aj symmetry. Thus, the maximum of x occurs when

|A1| = |A2| = |A3|, which drastically simplifies the calculation. However, as Eq. (16) and

Eq. (17) show, xΛ in Eq. (16) does not have this symmetry. This is due to the fact that the

relaxed GHZ symmetry is less symmetric than the GHZ symmetry.

The Lagrange multiplier method generates three equations ∂xΛ

∂|Ai| = 0 (i = 1, 2, 3). Since

we have three Lagrange multiplier constants, these equations can be used to express Λi in

terms of |Ai|. Thus, we should determine |Ai| from only three constraints Θi = 0, which

yields

|A1|2 =
y1 ± 2

√
y1y2y3

2y1
|A2|2 =

y2 ± 2
√
y1y2y3

2y2
|A3|2 =

y3 ± 2
√
y1y2y3

2y3
. (19)
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Therefore, |A1| = |A2| = |A3| doe not hold unless y1 = y2 = y3. This is due to the less-

symmetric nature of the relaxed GHZ symmetry compared to the GHZ symmetry. From Eq.

(19) xmax is given by

xmax =
1

8

√
(y1 − 4y2y3)(y2 − 4y1y3)(y3 − 4y1y2)

y1y2y3
. (20)

Eq. (20) gives a certain boundary in the four-dimensional (x, y1, y2, y3) space, inside of which

the relaxed GHZ-symmetric separable states reside. It is worthwhile noting two points at the

present stage. First, if the term inside the square root in r.h.s. of Eq. (20) is negative at some

point (or region) inside the polyhedron of Fig. 2(a), this means that this point is excluded

from the boundary. This is similar to − 1
4
√

3
≤ y < 0 region in the GHZ-symmetric case as

Fig. 1 exhibits. Second, if the region generated by Eq. (20) is not convex, we should extend

it to its convex hull because the set of each entanglement class should be convex set.

Now, we consider several special cases. If y1 = y2 = y3 ≡ y, Eq. (11) gives − 1
12 ≤ y ≤ 1

4

and xmax becomes

xmax =
1

8
(1− 4y)3/2. (21)

Since this is not convex (see blue line of Fig. 3(a)), we have to choose a convex hull, which is

xmax =
1

8
− y

2
. (22)

This region is depicted in Fig. 3(a) as a green color.

As a second example, let us consider a case of y1 = y2 = −y3 ≡ y. In this case Eq. (11)

gives − 1
4 ≤ y ≤ 1

12 and − 1
6 ≤ x ≤ 1

6 , which is depicted in Fig. 3(b) as the largest inverted

triangle. Then, from Eq. (20) xmax reduces to

xmax =
1

8
(1 + 4y)3/2. (23)

The y-dependence of xmax is plotted as blue lines in Fig. 3(b). The reason why Eq. (20)

does not yield boundary curves at y ≥ 0 is due to the fact that the mapping from the pure

separable states to the relaxed GHZ-symmetric states does not cover the full range of the

separable region. This fact can be easily verified from Eq. (15).

In spite of this incomplete information one can derive the separable region by making use

of the positive partial transpose (PPT) condition. The PPT condition of ρES(x, y1, y2, y3) is

|x| ≤ xmax = min(α2, α3, α4), (24)

where

α2 =
1

8
− y1 + y2 − y3

2
, α3 =

1

8
− y1 − y2 + y3

2
, α4 =

1

8
− −y1 + y2 + y3

2
. (25)

Therefore, for the case of y1 = y2 = −y3 ≡ y, the PPT condition reduces to

|x| ≤ min

(
1

8
− 3y

2
,

1

8
+
y

2

)
, (26)
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Fig. 3. Separable region for (a) y1 = y2 = y3 ≡ y, (b) y1 = y2 = −y3 ≡ y, (c) y1 = y2 = 0

and y3 ≡ y. For first two cases Eq. (20) generates concave regions (see blue lines). Thus the
convex hull (red line) for each case is chosen as a separable region. For last case, however, Eq.

(20) generates a convex separable region (see red line). If y1 = −y2 = −y3 ≡ y, the separable
region in the (x, y) plane becomes the same with (b) upside down.
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which reduces to a green color region in Fig. 3 (b). In fact, this is a minimal convex region,

which contains the curve Eq. (23) and y-axis.

As a third example, let us consider a case of (y1, y2, y3) = (0, 0, y). In this case Eq. (11)

gives − 1
4 ≤ y ≤

1
4 and Eq. (20) yields

xmax =
1

8
(1− 4y). (27)

The corresponding separable region is plotted in Fig. 3(c) as a green color. Since it is convex,

we do not need to choose a convex hull in this case. For this case the PPT condition reduces

to

|x| ≤ min

(
1

8
± y

2

)
, (28)

which coincides with a green color region in Fig. 3(c).

5 Rough Classification using the class-specific optimal witness operators

B
+

W
+

G

B
+

W
+

G

W
+GW+

G

GG
ac

d

e

f
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h

i
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b

-0.4 -0.2 0.0 0.2 0.4
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0.2
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0.8

x

y1 + y2 + y3

Fig. 4. Rough SLOCC classification of the relaxed GHZ-symmetric states ρES given in Eq. (9). G,

W, and B stand for GHZ class, W class, and bi-separable class. The symbol ‘+’ means coexistence.
For example, W+G means the coexistence of GHZ and W classes.

The Lagrange multiplier method used in the previous section to derive the region for the

separable states cannot be used to derive the region for the bi-separable states. The reason is

as follows. If we choose first qubit as a separable qubit such as |ψbisep〉 = (G1⊗G2⊗G3)|0〉⊗
1√
2
(|00〉+ |11〉), where

Gj =

(
Aj Bj
Cj Dj

)
, (29)

the mapping from a set of the three-qubit pure states to the set of the relaxed GHZ-symmetric

states cannot change the separability of the first qubit because the qubit permutation is not

involved in the relaxed GHZ symmetry. Since, however, the definition of the bi-separable

mixed state means a quantum state whose pure-states ensemble can be represented as only

separable and bi-separable states without restriction to the separable qubit, the Lagrange
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multiplier method used in the previous section cannot be applied for deriving the region for

the bi-separable relaxed GHZ-symmetric states.

In this paper, instead of the Lagrange multiplier method, we use the class-specific optimal

witness operators

Wbisep\sep = I − 4|GHZ+〉〈GHZ+|+ 2|GHZ−〉〈GHZ−| (30)

WW\bisep =
1

2
I − |GHZ+〉〈GHZ+|

WGHZ\W (v0) =
3

4
I − 3

v2
0 − 2v0 + 4

|GHZ+〉〈GHZ+| −
3

v2
0 + 2v0 + 4

|GHZ−〉〈GHZ−|,

which are derived in Ref.[11] by using the classification of the GHZ-symmetric states. Here,

we choose v0 = 0.981, which corresponds to the fact that the optimal witness operators yield

an exact classification to the Werner state

ρW = p|GHZ+〉〈GHZ+|+ (1− p)1

8
I. (31)

The information the class-specific witness WA\B provides is as follows. Let ρ be an arbi-

trary three-qubit quantum state. If tr(WA\Bρ) < 0, this means that ρ is in A or its higher

class in the three-qubit hierarchy S ⊂ B ⊂ W ⊂ GHZ.

Using Eq. (30) and Eq. (9) it is straightforward to show

tr
[
Wbisep\sepρ

ES
]

=
3

4
− (y1 + y2 + y3)− 6x (32)

tr
[
WW\bisepρ

ES
]

=
1

2

[
3

4
− (y1 + y2 + y3)− 2x

]
tr
[
WGHZ\Wρ

ES
]

=
3(v2

0 + 4)

(v2
0 − 2v0 + 4)(v2

0 + 2v0 + 4)

[
(v2

0 + 3)(v2
0 + 4)− 4v2

0

4(v2
0 + 4)

− (y1 + y2 + y3)− 4

v2
0 + 4

x

]
.

It is worthwhile noting that Eq. (32) is not dependent on yj (j = 1, 2, 3) individually, but

dependent on y1 + y2 + y3. The information we can gain from Eq. (32) is as follows. The

relaxed GHZ-symmetric separable states should be confined in a polygon (b, f, g, h) in Fig.

4. The relaxed GHZ-symmetric bi-separable states should be confined in a polygon (b, e, g, i).

The relaxed GHZ-symmetric W states should be confined in a polygon (a, c, d, g, j). Of course,

all SLOCC classes should be distributed with obeying the three-qubit hierarchy S ⊂ B ⊂ W

⊂ GHZ. This information is pictorially depicted in Fig. 4. The three examples discussed in

the previous section can be shown to be consistent with this information, i.e., all green regions

in Fig. 3 are contained in the polygon (b, f, g, h).

There is another way, which enables us to get a rough classification of the relaxed GHZ-

symmetric states ρES . First, we map from ρES in Eq. (9) to ρS in Eq. (3), which results in

ρS(ρES). Then, the parameters x and y of ρS(ρES) are

x =
1

2

(
ρES000,111 + ρES111,000

)
= x (33)

y =
1√
3

(
ρES000,000 + ρES111,111 −

1

4

)
=

1√
3

(y1 + y2 + y3).
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Since ρS(ρES) should be lower class than ρES , we conclude

(i) ρES is a GHZ class if ρS(ρES) is a GHZ class

(ii) ρES is a GHZ or W class if ρS(ρES) is a W class

(iii) ρES is a GHZ, W, or B class if ρS(ρES) is a B class.

This makes an another figure, which looks like Fig. 1 up to some scaling factor in y1 +y2 +y3.

Of course, GHZ, W, bi-sep in Fig. 1 should be replaced with G, W+G, B+W+G, respectively.

This figure is slightly different from Fig. 4 generated by the class-specific witnesses. This is

due to the fact that we choose, for simplicity, v0 = 0.981, which makes WGHZ\W (v0) optimal

for only Werner state. If v0 is treated as a variable properly, both methods should generate

identical figure.

6 Conclusion

In this paper we analyze the SLOCC classification of the relaxed GHZ-symmetric states ρES ,

which is parametrized by four real parameters. The condition for separable states of ρES is

analytically derived (see Eq. (20)). The higher classes such as B, W, and GHZ classes are

roughly classified by making use of the class-specific optimal witnesses and map from relaxed

GHZ symmetry to GHZ symmetry (see Eq. (33)). From this analysis we guess that the

entanglement classes of ρES are not dependent on yj (j = 1, 2, 3) individually, but dependent

on y1 + y2 + y3 collectively. Unfortunately, we do not know how to prove our guess from the

analytical ground.

The entanglement classification for the GHZ-symmetric case can be extended to the higher-

qubit systems. However, analysis of the entanglement classes in the higher-qubit systems

seems to be much more difficult than that of the three-qubit case. For example, the general

form of the GHZ-like-symmetric statescin four qubit system is parametrized by three real

parameters in a form

ρS4 = β [|0000〉〈1111|+ |1111〉〈0000|] (34)

+diag (α1, α2, α2, α3, α2, α3, α3, α2, α2, α3, α3, α2, α3, α2, α2, α1)

with α1 + 4α2 + 3α3 = 1
2 . Therefore, total set of the GHZ-like symmetric states should be

represented by three-dimensional volume in the parameter space. Furthermore, although the

entanglement classification of the four-qubit pure system is treated in several papers[12, 17,

18, 19, 20, 21], their results can be confusing and seemingly contradictory. The worst thing

is that the entanglement classes of the four-qubit mixed system are not well understood so

far and it is not clear whether or not they obey the linear hierarchy. We hope to revisit this

issue in the future.
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